Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease*

نویسندگان

  • Marcin I. Apostol
  • Michael R. Sawaya
  • Duilio Cascio
  • David Eisenberg
چکیده

A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are "steric zippers," pairs of interacting β-sheets. Both structures of these "homozygous steric zippers" reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The human prion protein residue 129 polymorphism lies within a cluster of epitopes for T cell recognition.

T cell immune responses to central nervous system-derived and other self-antigens are commonly described in both healthy and autoimmune individuals. However, in the case of the human prion protein (PrP), it has been argued that immunologic tolerance is uncommonly robust. Although development of an effective vaccine for prion disease requires breaking of tolerance to PrP, the extent of immune to...

متن کامل

The residue 129 polymorphism in human prion protein does not confer susceptibility to Creutzfeldt-Jakob disease by altering the structure or global stability of PrPC.

There are two common forms of prion protein (PrP) in humans, with either methionine or valine at position 129. This polymorphism is a powerful determinant of the genetic susceptibility of humans toward both sporadic and acquired forms of prion disease and restricts propagation of particular prion strains. Despite its key role, we have no information on the effect of this mutation on the structu...

متن کامل

Crystal structure of human prion protein bound to a therapeutic antibody.

Prion infection is characterized by the conversion of host cellular prion protein (PrP(C)) into disease-related conformers (PrP(Sc)) and can be arrested in vivo by passive immunization with anti-PrP monoclonal antibodies. Here, we show that the ability of an antibody to cure prion-infected cells correlates with its binding affinity for PrP(C) rather than PrP(Sc). We have visualized this interac...

متن کامل

Conformational diversity in prion protein variants influences intermolecular beta-sheet formation.

A conformational transition of normal cellular prion protein (PrP(C)) to its pathogenic form (PrP(Sc)) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of h...

متن کامل

Absence of spontaneous disease and comparative prion susceptibility of transgenic mice expressing mutant human prion proteins

Approximately 15 % of human prion disease is associated with autosomal-dominant pathogenic mutations in the prion protein (PrP) gene. Previous attempts to model these diseases in mice have expressed human PrP mutations in murine PrP, but this may have different structural consequences. Here, we describe transgenic mice expressing human PrP with P102L or E200K mutations and methionine (M) at the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 285  شماره 

صفحات  -

تاریخ انتشار 2010